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Abstract 

W e  describe  techniques for performing  mobile  robot 
localization  using  occupancy  grids  that  enable  both  sub- 
pixel  localization  to be performed  and  uncertainty  es- 
t imates   to  be computed.  The  uncertainty  is  addressed 
with  respect  to  both  the  standard  deviation of the lo- 
calization  estimate  and  the  probability of a qualita- 
tive  failure.  The  techniques  are based o n  a localiza- 
tion  method  that  performs  matching  between  the  visible 
landmarks  at  the  current  robot  position  and a previ- 
ously  generated  map of t he   env i ronmen t .   We   f i r s t  es- 
timate  the  probability  distribution of the  distance  from 
each  feature in the local map  to  the  closest   feature an 
the  larger  map.  Subpixel  localization  and  uncertainty 
es t imation  are  then  perform  by fitting the  likelihood 
function  over  the  space of possible  robot  positions  with 
a parameterized  surface.  Synthetic  experiments  are 
described  and an  example of the  performance of this 
method  is   given  using  the  Rocky 7 Mars  rover  proto- 
type. 

1 Introduction 

Localization is a critical issue in mobile robotics. If 
the  robot does not know where it is, it  cannot effec- 
tively plan  movements,  locate  objects, or reach goals. 
It is important  to  not only perform accurate localiza- 
tion when possible, but also to know when the local- 
ization estimate  has a large  uncertainty  and when it 
is possible that a qualitative  failure in localization  has 
occurred. For example, in environments  with  sparse 
recognizable landmarks,  many places may  appear to 
be very similar to  the  robot. It is crucial to know 
when this is the case, so that additional data can  be 
collected to improve the robot  localization. 

This  paper  describes  techniques  to perform accu- 
rate subpixel  localization when sufficient information 
is available and  to generate  uncertainty  estimates in 

the localization result,  both  in  the  standard deviation 
of the localization and  in  the probability of qualitative 
failure. The techniques that we describe are general 
in nature  and can be applied to  most map represen- 
tations. However, we concentrate  on the application 
of these techniques to three-dimensional  occupancy 
grids, building upon previously reported  results that 
perform localization by matching  terrain  maps using 
a maximum-likelihood comparison  measure [SI. 

We first review the basic localization  method that is 
used. This  technique  computes  a map similarity  mea- 
sure using the probability  distribution  function  (PDF) 
of the distance from each occupied cell in the  terrain 
map computed at  the current  robot  position to  the 
closest occupied cell in a previously computed  map of 
the  terrain. An accurate  approximation for this  proba- 
bility distribution  function is  given using the weighted 
sum of a  normal  distribution (for cases where the cell  is 
an inlier) and a constant  distribution (for cases where 
the cell  is an  outlier).  These  PDFs form the core of 
the likelihood function for each robot pose. 

Subpixel localization and  uncertainty  estimation 
are performed by fitting the peak  in the likelihood 
function  with  a  parameterized  surface. We approxi- 
mate  the peak in the likelihood function  as a normal 
distribution.  Operating  in the log-likelihood domain 
allows us to fit the peak  with  a second order polyno- 
mial. The location of the summit of this surface yields 
the subpixel localization estimate.  Furthermore, the 
rate at which the surface falls off from the peak  pro- 
vides a estimate on the uncertainty  in the localization. 
The probability of a qualitative  failure is estimated by 
comparing the likelihood scores under the peak that 
is taken to be the  robot position and  the remaining 
likelihood scores in the pose space. 

These techniques have been applied to  perform- 
ing localization on the Rocky 7 Mars rover prototype 
[l]. Rocky 7 is a six-wheeled mobile robot of approxi- 
mately the same size and  shape  as  the  Sojourner rover 
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2.2 Map similarity  measure 

Figure 1: Rocky 7 generating a range  map in the JPL Mars 
Yard using its mast cameras. 

[7] that has been built at  the  Jet Propulsion  Labora- 
tory  in order to develop new technologies for future 
missions to  Mars. See Figure 1. The techniques were 
tested using Rocky 7 in  the  JPL Mars Yard to simulate 
mission-like conditions. 

2 Maximum-likelihood localization 

The basic  localization  technique that we use is to 
compare a map  generated at the current  robot position 
(the local m a p )  to  a previously generated map of the 
environment (the global m a p )  [6]. This  technique is 
reviewed here. 

2.1 Terrain  maps 

We generate  both  the local map  and  the global map 
using stereo vision from the  robot.  (The global map 
may consist of the combined result of the previous 
local maps  or  it may  be  generated using panoramic 
imagery  from the robot's  starting location.) A dense 
range image is first  generated using stereo vision [3]. 
The  range image is then converted  into an occupancy 
grid  representation at some canonical orientation us- 
ing a binning  operation. (It is assumed that  the robot 
orientation is known through  other  sensors.)  The av- 
erage height of the range  points that fall into each bin 
is taken to  be  the height of the grid at  that location. 
Finally, we use a high-pass filter so that  the search for 
the robot  position need only be performed in the x 
and y directions. 

Figure 2 shows an example of a terrain  map  that 
was generated using data from the Mars  Pathfinder 
mission. 

In order to formulate the matching  problem  in 
terms of maximum-likelihood estimation, we use a  set 
of measurements that  are a function of the robot  po- 
sition. A convenient set of measurements is the dis- 
tance from the occupied cells in the local map  to  the 
closest occupied cell in the global map. Denote  these 
distances D F ,  ..., 0," for the robot  position X .  The 
likelihood function for the robot  position  can  be for- 
mulated  as the product of the probability  distributions 
of these  distances: 

n 

L ( X )  = n p ( D f )  
i=l  

For convenience, we work in the  lnp(X) domain: 

The  map similarity  measure that is used is de- 
fined entirely by the probability  distribution  function 
(PDF) of the distances, p(D) .  This probability  distri- 
bution  function will be discussed in  detail in Section 3. 

2.3 Search strategy 

A branch-and-bound  search strategy is used to  de- 
termine  the most likely robot position [2, 5, 61. The 
pose space is discretized at the same  resolution as the 
occupancy  grids so that neighboring  positions  in the 
pose space move the relative  positions of the grids by 
one grid cell. We first test  the nominal  position of the 
robot given  by dead-reckoning, so that we have an ini- 
tial  position and likelihood to compare  against.  Next, 
the pose space is divided into rectilinear cells. Each 
cell is tested to determine  whether it could contain a 
position that is better  than  the  best position  found 
so far. Cells that cannot  be  pruned  are divided into 
smaller cells, which are examined recursively. When 
a cell is reached that contains a single position  in the 
discretized pose space, this position is tested explicitly. 

To determine  whether a cell C could contain  a pose 
superior to  the best  found so far, we examine the pose 
c at  the center of the cell. A bound is computed  on 
the maximum  distance between the location to which 
a cell in the local map is transformed by c and by 
any  other pose in the cell. We call this  distance A c .  
For the space of translations, A c  is simply the dis- 
tance between c and  any corner of the cell. To place a 
bound  on the quality of the cell, we compute for each 
occupied cell in the local map: 
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Figure 2: Terrain  map  generated from Pathfinder  imagery 
Terrain map generated from stereo imagery. 

Df = max(Dt - A c ,  0) 

Py  = lnp(Dy) 

Dl is the distance from the  ith feature in the local 
map at the position given  by c,  the center of the cell, 
to  the closest feature in the global map. DC is a bound 
on the distance that can  be achieved for the  ith feature 
at any  position  in the cell C.  Pi" is the maximum score 
that  the  ith feature of the local map  can  contribute to 
the likelihood for any  position in the cell'. 

A bound  on the best overall likelihood that can  be 
found at  a position in  the cell is now  given by: 

n 

If this  bound does not  surpass  the best that we have 
found so far,  then  the  entire cell  is pruned from the 
search.  Otherwise, the cell is divided into two cells 
by slicing it  along the longest axis and  the process is 
repeated recursively on the subcells. 

3 Estimating the PDF 

Now, let's  examine the probability  distribution 
function that should be used in the maximum- 
likelihood formulation described above. A PDF that 
accurately models the sensor uncertainty  can  be for- 
mulated as  the weighted sum of two terms: 

lThis assumes that  the PDF is monotonically non- 
increasing, which is true for any reasonable PDF, since we desire 
closer matches to yield higher scores. 

(a) Composite  image of Sojourner and rocks  on Mars. (b) 

The first term describes the error  distribution when 
the cell is an inlier in the sense that  the position  in the 
local map under  consideration also exists in the global 
map.  In  this case, Df is a  combination of the errors 
in the local and global maps at this position.  In the 
absence of additional  information  with  respect to  the 
sensor model, we approximate p l (Df )  as  a  normal 
distribution: 

The second term describes the error  distribution 
when the cell  is an  outlier.  In  this case the position 
represented by the cell in the local map does not  ap- 
pear  in the global map.  This  may  be  due to range 
shadows that were present when the global map was 
constructed or outliers that  are present  in the range 
data when the local map is constructed.  In  theory, 
this  term should  also  decrease as DX increases, since 
even true outliers are likely to  be  near some occupied 
cell in the global map. However, this allows patho- 
logical cases to have an undue effect on  the likelihood 
for a  particular  robot  position.  In  practice, we have 
found that modeling this  term  as a constant is both 
convenient and effective: 

Let us now consider the constants in this probabil- 
ity  distribution  function.  First, (Y is the probability 
that any  particular cell in  the local map is an in- 
lier. For our  occupancy  grids, we shall  assume that 
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this value is relatively  large (a  = 0.95). In practice, 
the localization is insensitive to  the precise value of 
this  variable.  Next, u is the  standard deviation of the 
measurements that  are inliers. This value can  be de- 
termined from the characteristics of the sensor, or it 
can  be  estimated  empirically by examining  real data, 
which is what we have  done for localization on Rocky 
7. Finally, K is the expected  probability  density for 
the measurement  generated for a  random  outlier  point: 

J - o o  J--03 

This value can  be  estimated quickly through ex- 
amination of the Euclidean  distance  transform of the 
image (see [4] for details). 

4 Subpixel localization 

Using this  probabilistic  formulation of the localiza- 
tion  problem, we can  estimate the uncertainty in the 
localization,  in terms of both  the variance of the esti- 
mated positions and  the probability that a qualitative 
failure  has  occurred.  In  addition, we can perform sub- 
pixel localization in the discretized pose space by fit- 
ting a  function to  the peak that occurs at  the most 
likely robot  position. Since the likelihood function 
measures the probability that each position is the ac- 
tual  robot position, the uncertainty in the localization 
is measured by the  rate at which the likelihood func- 
tion falls off from the peak. 

Let us take  as  an  assumption  that  the likelihood 
function  approximates a normal  distribution in the 
neighborhood around  the peak  location. Fitting such 
a  normal  distribution to  the computed likelihoods 
yields both  an  estimated variance in the localization 
estimate  and a subpixel estimate of the peak  location. 
While the approximation of the likelihood function  as 
a normal  distribution may not  be  accurate in gen- 
eral,  it does yield a good fit to  the local neighborhood 
around the peak and our  experimental  results  indicate 
that very accurate  results  can be achieved under this 
assumption. 

Now, since we actually  perform  our  computations  in 
the domain of the  natural  logarithm of the likelihood 
function, we must fit these values with  a polynomial 
of order 2. If  we assume  independence in x and y ,  we 
have: 

(x - .0)2 (Y - Yo)2 1 lnL(x, y) = - - + In - 
2a3 2u; 27rux(Ty 

In order to estimate the parameters that we are in- 
terested in (20, yo, ux, and oY), we project  this poly- 
nomial onto  the lines x = x0 and y = yo, yielding: 

2 ( x  - x01 + I n  1 InL(x, yo) = - 
2 4  27ruxny 

(Y - Y O l 2  1 lnL(x0, y) = - + In - 
2rT; 27rnxoy 

We now fit these  equations to  the x and y cross- 
sections of the likelihood function at the location of 
the peak. If the peak  in the discretized  search  space 
occurs at position (xp, yp), then we fit L(x, yo) to  the 
values at  the surrounding 5 positions along y = yp: 

1-2 = q x p  - 2,Yp) 

1-1 = J q x p  - 1,Yp) 

lo = L b p ,  Yp) 
11 = L(qJ + LYp) 

l 2  = J q x p  + 2,Yp) 

The least-squares fit to a parabola (y = ax2  +bx+c) 
with  x = {-2,  -l,O,  1,2} yields: 

r 

We can now solve for x0 and (T, using: 

b 
x0 = xp - - 

U 

1 
ox = - JZi 

The derivation for yo and ny is the same,  except 
that we project  onto the line x = x p .  The values of 
x. and yo yield the subpixel  localization  result, since 
this is the estimated  location of the peak  in the likeli- 
hood  function. In addition, cx and oY now yield direct 
estimates for the uncertainty in the localization  result. 

5 Probability of failure 

In  addition to estimating the uncertainty  in the lo- 
calization  estimate, we can use the likelihood scores to  
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estimate  the probability of a failure to detect the cor- 
rect  position of the  robot.  This is particularly useful 
when the  terrain yields few landmarks or other refer- 
ences for localization and  thus many  positions  appear 
similar to  the  robot. 

We estimate  the probability of failure by summing 
the likelihood scores under the peak selected as  the 
most likely robot position and comparing to  the sum 
of the likelihood scores that  are  not  part of this peak. 
In  practice, we can  usually estimate  the  sum under the 
peak by examining a small  number of values around 
the peak,  since they fall off very quickly (recall that  the 
computed values are  the  logarithm of the likelihood 
function). 

The values for the remainder of the pose space can 
be  estimated efficiently with some additional compu- 
tation  during  the search.  Whenever  a cell in the search 
space is considered, we compute  not only a bound on 
the maximum score that can  be achieved, but also an 
estimate on the average score that is achieved by deter- 
mining the score for the center of the cell. If the cell is 
pruned,  then the sum is incremented by the  estimated 
score multiplied by the size of the cell. In  practice,  this 
yields a very good estimate, since regions with  large 
scores cannot  be  pruned  until  the cells become small. 
We thus  get good  estimates when the score is large 
and, when the  estimate is not  as  good,  it is because 
the score is small and does not significantly affect the 
overall sum. 

Let S, be the sum  obtained for the largest  peak 
in the pose space and Sn be  the  sum for the rest of 
the pose space. We can estimate  the probability of 
correctness for the largest  peak  as: 

6 Results 

These  techniques have been tested  on  synthetic 
data for which we could compare the performance of 
the techniques  with  real  ground truth,  and in real ex- 
periments  on the Rocky 7 rover prototype. 

6.1 Synthetic data 

We first  applied  these  techniques to localization us- 
ing  landmarks  in  synthetic  experiments.  In  these ex- 
periments, we randomly  generated  a  synthetic envi- 
ronment  containing 160 landmarks  on  a  256x256  unit 
square. Let us say that each unit is 10 cm (though 
the entire  problem scales to  an  arbitrary size).  In each 

Figure 3: Distribution of errors  and  estimated  standard 
deviations  in  synthetic  landmark  localization  experiment. 
(a)  Comparison of estimated  distribution of localization 
errors  (solid  line) to  observed  distribution of localization 
errors (bar  graph).  (b)  Distribution of estimated  standard 
deviations  in  the  localization  estimate. 

trial, seven of the  ten  landmarks closest to  some  ran- 
dom robot  location were considered to  be observed by 
the robot  (with  Gaussian  error in both x and y with 
standard deviation 0 = 1 unit)  along  with 3 spurious 
landmarks  not included in the  map. Localization was 
then performed using these 10 observed landmarks  in a 
discrete  occupancy map,  with  no knowledge of the po- 
sition of the robot in this environment. Over 100000 
trials,  the  robot was correctly localized in 99.8% of 
the cases, with an average  error in the correct  trials of 
0.356 units in each dimension. The average  estimated 
standard deviation  in the localization using the tech- 
niques from the previous section was 0.427 units. 

Figure 3(a) shows the distribution of actual  errors 
observed versus the distribution that we expect from 
the average standard deviation  estimated in the  tri- 
als. The close similarity of the plots  indicates that  the 
average  estimated  standard deviation is a very good 
estimate of the actual value. It  appears  that  this esti- 
mate is slightly smaller than  the  true value since the 
frequency of the observed errors is slightly  above the 
curve at  the tails  and lower at the peak. However, 
the overall similarity is quite  high. The similarity be- 
tween these  plots also validates the approximation of 
the likelihood function as a  normal  distribution  in the 
neighborhood of the  peak. Figure 3(b) shows the dis- 
tribution of the estimated  standard deviations  in this 
experiment. It can be observed that  the  estimate is 
very consistent between trials, since the plot is very 
strongly peaked near the location of the average es- 
timate.  The right  tail of the plot is longer than  the 
left tail,  indicating that when errors  occur  they  are 
more likely to overestimate the  standard deviation of 
the  error. Taken together,  these  plots  indicate that 
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Figure 4: Rocky 7 performing  localization.  (a)  Before  moving the  terrain is mapped. (b) After  moving the  same  area is 
image  to  perform  localization. 

the  standard deviation  estimates are very likely to be 
accurate for each  individual trial. 

We also tested  the probability of correctness mea- 
sure  in  these  trials. For trials that resulted in correct 
localization, the average  computed  probability of cor- 
rectness was .993, while this value was .642 for trials 
that results  in  failures.  The  probability of correctness 
measure thus yields information that can  be used to 
evaluate  whether the localization  result is reliable. 

A  comparison of these  techniques  with a version 
that does not  perform  subpixel  localization  indicates 
that  the subpixel  localization reduces th,e  error in the 
localization by 16.2%. 

6.2 Real example 

Additional  experiments have been performed on the 
Rocky 7 Mars rover prototype in the  JPL Mars Yard. 
Figure 4 shows an example.  In this case, the rover 
generated  a  map of the  terrain at a starting position 
using 4 stereo  pairs of images covering the  area  around 
a rock that was designated as  the localization target. 
After moving, the rover again  captured  a  stereo  pair 
of images directed at  the localization target. Localiza- 
tion was performed by matching the range  map gen- 
erated after the move to  the  terrain  map  that was 
generated before the move. In  this case, the rover de- 
termined that  it  had moved 4.14  meters from the orig- 
inal  location, which agrees closely with the measured 
result. 

7 Summary 

This  paper  has  described  techniques for perform- 
ing accurate localization with  uncertainty  estimation 
using discrete  occupancy  grids. The  method is based 
upon  a maximum-likelihood method to  register occu- 
pancy  grids  representing the robot visible environment 
and a previously generated  map. We first estimate 
the probability  distribution  function of the measured 
distance from each of the occupied cells in the local 
map to  the closest occupied cells in the global map 
according to some robot  position. This probability 
distribution  function is used in the formulation of the 
maximum-likelihood map  registration  measure.  In or- 
der to perform subpixel  localization and  uncertainty 
estimation,  the likelihood function is fit with  a pa- 
rameterized  surface in the neighborhood of the best 
peak. In addition, the probability of a qualitative fail- 
ure is estimated by examining the scores over the en- 
tire pose space.  Experiments  on  synthetic data have 
demonstrated that  this  approach yields superior re- 
sults to cases where the probability  distribution func- 
tion is not  estimated  and where subpixel  localization 
is not  used.  Furthermore,  the  uncertainty  estimates 
that  are generated  can be used to  integrate multiple 
localizations  in  a  Kalman  filtering  framework.  These 
techniques were applied to  localization of the Rocky 7 
Mars rover prototype. 
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